If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-36x-20=0
a = 36; b = -36; c = -20;
Δ = b2-4ac
Δ = -362-4·36·(-20)
Δ = 4176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4176}=\sqrt{144*29}=\sqrt{144}*\sqrt{29}=12\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-12\sqrt{29}}{2*36}=\frac{36-12\sqrt{29}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+12\sqrt{29}}{2*36}=\frac{36+12\sqrt{29}}{72} $
| 16+w=-9 | | 52=11x-12 | | 18-u=-9 | | x+2+x-26=90 | | C=1000+3x+0.004x^2 | | 5x-22+x+28=180 | | 3x+6-2+5x=175 | | 0.8f=3 | | 5t+3t=14 | | 0.04x=70-x | | 18+6=-6v+6v | | 6x-4=-4+4x | | 4x(-2x+1)=9 | | 2-h=-12 | | 4x-2x+1=9 | | -3/5(4m-6)=14 | | 2x-13+5x-9=90 | | 4(8y-8)+(8y+64)=25(3y+8)-69y | | 5/4x+6=9 | | 16+33=x | | 18*h=6 | | 7x^2+5-x=6x^2+10 | | 151=-u+272 | | 6x-32=8x+6 | | -(4x-7)=-2+4x | | u-4.28=8.4 | | y+5.97=9.64 | | 7x=17=4x+32 | | v+16=59 | | 7x=17=4x=32 | | 2x-20=6x-12 | | 2x+20=7x-12 |